855 research outputs found

    StreamLearner: Distributed Incremental Machine Learning on Event Streams: Grand Challenge

    Full text link
    Today, massive amounts of streaming data from smart devices need to be analyzed automatically to realize the Internet of Things. The Complex Event Processing (CEP) paradigm promises low-latency pattern detection on event streams. However, CEP systems need to be extended with Machine Learning (ML) capabilities such as online training and inference in order to be able to detect fuzzy patterns (e.g., outliers) and to improve pattern recognition accuracy during runtime using incremental model training. In this paper, we propose a distributed CEP system denoted as StreamLearner for ML-enabled complex event detection. The proposed programming model and data-parallel system architecture enable a wide range of real-world applications and allow for dynamically scaling up and out system resources for low-latency, high-throughput event processing. We show that the DEBS Grand Challenge 2017 case study (i.e., anomaly detection in smart factories) integrates seamlessly into the StreamLearner API. Our experiments verify scalability and high event throughput of StreamLearner.Comment: Christian Mayer, Ruben Mayer, and Majd Abdo. 2017. StreamLearner: Distributed Incremental Machine Learning on Event Streams: Grand Challenge. In Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems (DEBS '17), 298-30

    The Fog Makes Sense: Enabling Social Sensing Services With Limited Internet Connectivity

    Full text link
    Social sensing services use humans as sensor carriers, sensor operators and sensors themselves in order to provide situation-awareness to applications. This promises to provide a multitude of benefits to the users, for example in the management of natural disasters or in community empowerment. However, current social sensing services depend on Internet connectivity since the services are deployed on central Cloud platforms. In many circumstances, Internet connectivity is constrained, for instance when a natural disaster causes Internet outages or when people do not have Internet access due to economical reasons. In this paper, we propose the emerging Fog Computing infrastructure to become a key-enabler of social sensing services in situations of constrained Internet connectivity. To this end, we develop a generic architecture and API of Fog-enabled social sensing services. We exemplify the usage of the proposed social sensing architecture on a number of concrete use cases from two different scenarios.Comment: Ruben Mayer, Harshit Gupta, Enrique Saurez, and Umakishore Ramachandran. 2017. The Fog Makes Sense: Enabling Social Sensing Services With Limited Internet Connectivity. In Proceedings of The 2nd International Workshop on Social Sensing, Pittsburgh, PA, USA, April 21 2017 (SocialSens'17), 6 page

    Phonology and intonation

    Get PDF
    The encoding standards for phonology and intonation are designed to facilitate consistent annotation of the phonological and intonational aspects of information structure, in languages across a range ofprosodic types. The guidelines are designed with the aim that a nonspecialist in phonology can both implement and interpret the resulting annotation
    • …
    corecore